Measuring Software Development Productivity

www.construx.com

#cxsummit @construxguru @stevemconstrux
These materials are © 2013-2015 Construx Software Builders, Inc.

All Rights Reserved. No part of the contents of this presentation may be reproduced or transmitted in any form or by any means without the written permission of Construx Software Builders, Inc.
I Invite You to Join Me on a Journey
A Journey to Measure Productivity?
A Journey to Measure Productivity!
Why Measure Productivity?
Levels of Productivity Measurement

- Organization/Company
- Team/Workgroup (5-9 people)
- Individual Contributor
Why Measure Productivity? (Organizational Level)

- Assess competitiveness with other organizations
- Track and evaluate progress over time
- Support performance evaluation of software executives
- Support bonus allocation among software executives
- Decide allocation of resources to onshore / offshore / outsourced

These are not my reasons; these are reasons given by clients who state they want to measure productivity.
Why Measure Productivity? (Team/Workgroup Level)

- Compare teams to see who should be learning from whom
- Support performance evaluations of team managers
- Support allocation of bonuses across teams
- Support allocation of work onshore/offshore

These are not my reasons; these are reasons given by clients who state they want to measure productivity.
Why Measure Productivity? (Individual Level)

- Support allocation of resources (people) across teams
- Contribute to individual performance review process
- Support allocation of bonuses among individual contributors

These are not my reasons; these are reasons given by clients who state they want to measure productivity.
Potential Issues

- Two issues that are potentially problematic in measuring productivity
Two Potential Issues

(1) Measuring
(2) Productivity
Today’s Journey

- Why measure productivity?
- What is productivity?
- Underlying 10x differences in productivity
- Evaluating measures of individual productivity
- Evaluating measures of team productivity
- Conclusions
What is Productivity?
Simple Definition

Productivity = Output / Input

This is simple, but many issues related to productivity can be resolved by referring back to this definition.
What is “Output”

- **THIS IS the Key Question!**
- Is “lines of code” an “output” in economic terms?
- Are “function points” an “output” in economic terms?
- Is work on a project that gets cancelled “output”?
- Is work on a project that is delivered successfully but ultimately fails in the marketplace “output”?
Candidate Outputs

- Number of product releases
- Number of products
- Revenue
- Profit
- Bug fixes
- Closed change requests
- Hours of up time / service level attained
- Support for company strategy
- Score on balanced score card
Candidate Outputs

Most of these measures of output are:

- Impossible to measure at the individual level
- Extremely difficult to measure at the team level
- Problematic to measure even at the company level
So What **Outputs** do we Measure?

- We measure **proxies**
- Which makes the measures of output **approximations** at best
Candidate Inputs

- Technical staff hours
- Technical staff cost (which is not exactly the same as staff hours)
- Business staff hours needed to support technical staff, e.g., in defining requirements *
- Business staff hours needed to support technical staff, e.g., manager travel time to India, etc. *
- Investment in travel *
- Investment in hardware and other infrastructure, especially communications infrastructure *
- Delta in technical debt pre-project vs. post-project *

* Difficult to measure above the individual contributor level
Even the Easy Inputs are More Difficult to Measure Than You Think

For example:
- Technical staff hours
Observations about the Simple Definition of Productivity

- The definitions of Input and Output change from the individual level to workgroup level, to team level, to business unit level, to company level.
- Attaining business buy-in to the definitions of Input and Output at any of the levels is typically a challenging task.
Observations about the Simple Definition of Productivity

- Note we have not found any great solutions to the problem of even defining what input or output we want to measure, much less actually measuring it.
Measurement
Underlying 10x Differences in Productivity
Origin of 10x

- Suitably for purposes of this talk, “10x” originated in a search for measuring productivity
- We have to talk about “10x” because everything else in measuring software productivity depends on understanding that, first
Sackman, Erickson, Grant, 1968

- Purpose of their study was to obtain data on differences in online vs. offline performance
- The original goal of their research was thwarted by the fact that individual productivity differences drowned out differences attributable to online vs. offline performance
All programmers had at least 7 years experience
- Range of initial coding times: 20:1
- Range of “debugging” times: 25:1
- Range of program sizes produced: 5:1
- Range of program execution speeds: 10:1

These differences have continued to plague software engineering research since 1968
Differences in Productivity

Productivity

A Productivity of Team A
B Productivity of Team B
Differences in Methods

Productivity

- Team A Used Pair Programming
- Team B Used Formal Inspections

Which method is better?
Differences in Capability

Productivity

A Team A Had Star Performers
B Team B Had Average Performers

Now which method is better?
Differences in Capability

Productivity

Team A’s Normal Range

Team B’s Normal Range

Now which method is better?
Effect of Variations in Human Productivity on Measuring Productivity

Typical Variation in Method Productivity (~20%)
Typical Variation in Individual Productivity (20:1) and Team Productivity (3-10:1)
Selected Other Research

<table>
<thead>
<tr>
<th>Study</th>
<th>Observed Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sackman, Erickson, & Grant 1968</td>
<td>5:1 to 28:1*</td>
</tr>
<tr>
<td>Daly, Brooks, et al, 1996</td>
<td>3.2:1 to 7.3:1*</td>
</tr>
<tr>
<td>Cartwright & Sheppard, 1998</td>
<td>1.9:1 to 2.2:1*</td>
</tr>
<tr>
<td>Curtis, 1981</td>
<td>7.8:1 to 22.3:1*</td>
</tr>
<tr>
<td>DeMarco & Lister 1985</td>
<td>5.6:1*</td>
</tr>
<tr>
<td>Humphrey 1995</td>
<td>20.4:1*</td>
</tr>
<tr>
<td>Boehm 1981</td>
<td>4.2:1†</td>
</tr>
<tr>
<td>Boehm 2000</td>
<td>5.3:1†</td>
</tr>
<tr>
<td>Card 1987</td>
<td>8.8:1 to 21.6:1*</td>
</tr>
</tbody>
</table>

*Individual Productivity †Team Productivity
Why Does This Matter?

Why do you want to measure productivity?

- If you’re measuring to assess the impact of a process, practice, or environmental factor:
 - The measurement will be subject to the confounding factor of 10x Variation
 - The measurement is not likely to be valid
Why Does This Matter?

Why do you want to measure productivity?

- Even if you’re measuring to assess individual or team productivity per se, the measurement will be confounded by process, practice, and environmental differences between projects
- The measurement is not likely to be accurate
Measurement in Research vs. Commercial Settings

- Research: Academia vs. Commercial
 - Purposes of measurement are different
 - Possible ways to measure are different
 - The problem just described is a problem even in academic research
 - The problem becomes much more significant in commercial settings, because of more confounding factors
- This presentation focuses on measuring productivity in a commercial setting
Evaluating Measures of Individual Productivity

See Handouts
Evaluating Productivity Measures

- We’ll look at specific measures
- We’ll define criteria for evaluating (scoring) the measures
- I’ll present a score card
Common Individual Productivity Measures (for Developers)

- Lines of Code / staff month (LOC/SM)
- Function Points / staff month (FP/SM)
- Story points / staff month
- 360 degree peer evaluations
- Manager evaluation
- Task-completion predictability
- Test cases passed
- Defect counts
Criteria for a Good Individual Productivity Measurement

- Measurement truly reflects “productivity”
- Directly or indirectly accounts for all work output
- Useful for measuring work of non-programmers (e.g., testers), directly or indirectly
- Resists “gaming” by Individual Contributors
- Strongly correlated with business value created
- Objective, independently verifiable
- Measures "output" the same, regardless of programming language used
- Supports cross-project comparisons
- Accounts for best people getting most difficult assignments
- Data can be collected easily and cheaply
Measurement Considerations

Measurement truly reflects “productivity”
Measurement Considerations

Directly or indirectly accounts for most or all work output
Useful for measuring work of non-programmers (e.g., testers, documenters, scrum masters, business analysts, etc.), directly or indirectly.
Measurement Considerations

Resists “gaming” by Individual Contributors

I hope this drives the right behavior

I’m going to code myself a new minivan this afternoon
Measurement Considerations

Resists “gaming” by Individual Contributors

- This is a big, big, big deal with simplistic measurement approaches
- “What gets measured gets done” (What doesn’t get measured doesn’t get done)
- Count on work sliding from measured activities into unmeasured activities
- Avoid single-dimension productivity measures
Measurement Considerations

Strongly correlated with business value created

From Facebook – could not find citation
Measurement Considerations

Objective, repeatable, independently verifiable
Measures "output" the same, regardless of programming language used.
Measurement Considerations

Supports cross-project comparisons
Measurement Considerations

Accounts for the best people getting the most difficult assignments
Measurement Considerations

Data can be collected easily and cheaply
Evaluating the Measures: Scale

- Excellent / 5
- Good / 4
- Neither Good nor Bad / 3
- Bad / 2
- Terrible / 1
Evaluating the Measures

- The following scoring is subjective

But

- It is explicit
- It is structured
Comparison of Individual (Developer) Productivity Measures

<table>
<thead>
<tr>
<th>Feature</th>
<th>LOC/SM</th>
<th>FP/SM</th>
<th>Story points / staff month</th>
<th>360 degree Peer Reviews</th>
<th>Manager Evaluation</th>
<th>Task Completion Predict'y</th>
<th>Test Cases Passed</th>
<th>Defect Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement truly reflects “productivity”</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Directly or indirectly accounts for all or most work output</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Useful for measuring work of non-programmers (e.g., testers)</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Resists “gaming” by Individual Contributors</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Strongly correlated with business value created</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Objective, independently verifiable</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Measures "output" the same, regardless of programming language used</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Supports person-to-person comparisons within a team</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Accounts for best people getting most difficult assignments</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Data can be collected easily and cheaply</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Average

- LOC/SM: 2.5
- FP/SM: 3.8
- Story points / staff month: 3.8
- 360 degree Peer Reviews: 3.9
- Manager Evaluation: 3.9
- Task Completion Predict'y: 3.1
- Test Cases Passed: 4.1
- Defect Rates: 3.7

Rank

- LOC/SM: 8
- FP/SM: 4
- Story points / staff month: 4
- 360 degree Peer Reviews: 2
- Manager Evaluation: 2
- Task Completion Predict'y: 7
- Test Cases Passed: 1
- Defect Rates: 6
Comparison of Individual (Developer) Productivity Measures

<table>
<thead>
<tr>
<th>Measurement</th>
<th>LOC/SM</th>
<th>FP/SM</th>
<th>Story points / staff month</th>
<th>360 degree Peer Reviews</th>
<th>Manager Evaluation</th>
<th>Task Completion Predict'y</th>
<th>Test Cases Passed</th>
<th>Defect Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement truly reflects “productivity”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directly or indirectly accounts for all or most work output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful for measuring work of non-programmers (e.g., testers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resists “gaming” by Individual Contributors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly correlated with business value created</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective, independently verifiable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measures "output" the same, regardless of programming language used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports person-to-person comparisons within a team</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts for best people getting most difficult assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data can be collected easily and cheaply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Observations about Individual Productivity Measures

- LOC/SM is easily the worst measure (score of 2.5)
Observations about Individual Productivity Measures

- No measure does better than 4.1 on a 5 point scale
Observations about Individual Productivity Measures

- The top 6 measures are closely ranked (3.7-4.1)
“Test cases passed” resists gaming if you have independent testing; without independent testing its overall score drops to 3.9 (i.e., moves into 6-way tie for 1st place (3.7-3.9))
Observations about Individual Productivity Measures

- “Manager evaluation” does better than you might expect as a “measure,” it has the best “effort” rating, and is normally the most readily available
Steve’s Conclusion

The business problems that individual productivity “measurement” needs to address can be addressed more effectively by a non-measurement technique.
Evaluating Measures of Team Productivity
Possible Team Productivity Measures

- LOC / staff month
- FP / staff month
- Story points / staff month
- 360-degree peer reviews
- Manager stack-rank evaluations *
- Project-completion predictability *
- Test cases passed
- Defect rates
- Score card *

* Different from individual measures
Team-Level Measurement Considerations

- Measurement truly reflects “productivity”
- Directly or indirectly accounts for all work output
- Useful for measuring work of the whole team, directly or indirectly *
- Resists gaming by the team *
- Strongly correlated with business value created *
- Objective, independently verifiable
- Measures "output" the same, regardless of programming language used
- Accurately reflects output of teams working on diverse kinds of projects *
- Accounts for best teams getting most difficult assignments *
- Data can be collected easily and cheaply

* Different from individual measures
Comparison of **Team-Level** Productivity Measures

<table>
<thead>
<tr>
<th></th>
<th>LOC/SM</th>
<th>FP/SM</th>
<th>Story Points/Staff Month</th>
<th>Manager Stack-Rank Evals</th>
<th>Project Completion Predict'ly</th>
<th>Test Cases Passed</th>
<th>Defect Rates</th>
<th>Score Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement truly reflects “productivity”</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Directly or indirectly accounts for all work output</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Useful for measuring work of whole team</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Resists gaming by the team</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Strongly correlated with business value created</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Objective, independently verifiable</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Measures "output" the same, regardless of programming language</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Accurately reflects output of teams working on diverse projects</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Accounts for best teams getting most difficult assignments</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Data can be collected easily and cheaply</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Average</td>
<td>2.4</td>
<td>3.8</td>
<td>3.1</td>
<td>3.8</td>
<td>3.8</td>
<td>3.7</td>
<td>3.9</td>
<td>4.5</td>
</tr>
<tr>
<td>Rank</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Comparison of **Team-Level** Productivity Measures

<table>
<thead>
<tr>
<th>Measurement</th>
<th>LOC/SM</th>
<th>FP/SM</th>
<th>Story points / staff month</th>
<th>Manager Stack-Rank Evals</th>
<th>Project Completion Predict'y</th>
<th>Test Cases Passed</th>
<th>Defect Rates</th>
<th>Score Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement truly reflects “productivity”</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Directly or indirectly accounts for all work output</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Useful for measuring work of whole team</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Resists gaming by the team</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Strongly correlated with business value created</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Objective, independently verifiable</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Measures "output" the same, regardless of programming language</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Accurately reflects output of teams working on diverse projects</td>
<td>△</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Accounts for best teams getting most difficult assignments</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Data can be collected easily and cheaply</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Average</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Rank</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Observations about Measures of Team Productivity

- Again, LOC/SM is easily the worst measure (score of 2.4)
- Score card is clear #1 (score of 4.5)
- The next 5 measures are closely ranked (3.7-3.9)
- “Test cases passed” is more susceptible to gaming at the team level than at the individual level
Scorecard Approach:
What **Output** do we want from the Team?

<table>
<thead>
<tr>
<th>Category</th>
<th>Possible Score</th>
<th>Actual Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Time Delivery</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Initial Defect Rate</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>+90 Day Defect Rate</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>% of Planned Functionality Delivered</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Early notification of problems</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Executive’s Satisfaction with Project Execution and Delivery</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sales’ Satisfaction with Project Execution and Delivery</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(88%)</td>
</tr>
</tbody>
</table>
Comments about the Scorecard

- Only significant weakness of the score card is its independent verifiability
- It is not “measurement” per se, but …
 - It is structured
 - It avoids over-optimization for one measure
 - It can provide for cross-project comparisons
 - It can be made public and can be reviewed
- The score card can and should be tailored to support organizational goals
Conclusions
True productivity measures in software are significantly limited:

- Agreeing on a definition of productivity is significantly problematic
- Meaningful Outputs are difficult or impossible to measure
 - Real business outputs are rarely measured, instead proxies for the real output are measured and are subject to significant measurement error
- Inputs are subject to significant measurement error
- The whole measurement exercise is subject to massive measurement error because of the “10x variation” phenomenon
The End of Our Journey

The questions that businesses want to address through measuring productivity can be addressed effectively through non-measurement or quasi-measurement approaches.

These alternative approaches **stack up very favorably** vs. measurement, especially when you account fully for the limitations involved in true measurement.
Construx Software is committed to helping individuals and organizations improve their software development practices. For information about our training and consulting services, contact stevemcc@construx.com.